The influence of crown-to-implant ratio on marginal bone loss: a narrative review
Review Article

种植体冠根比对边缘骨吸收的影响——叙述性综述

Adolfo Di Fiore, Francesco Maniero, Edoardo Stellini

Department of Neurosciences, School of Dentistry, Section of Prosthodontics and Digital Dentistry, University of Padova, Padova, Italy

Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Adolfo Di Fiore. Department of Neurosciences, School of Dentistry, Section of Prosthodontics and Digital Dentistry, University of Padova, Padova, Italy. Email: adolfo.difiore@unipd.it.

背景和目的:边缘骨吸收(Marginal bone loss,MBL)被认为是评价种植成功的一个基本标准,许多因素可能会影响MBL,但尚不清楚MBL如何受种植体冠根比(crown-to-implant ratio,C/I-R)的影响。此外,为避免骨增量手术引入的短种植体,导致C/I-R越来越高。本研究的目的是阐明高C/I-R对MBL的影响。

方法:所选文献通过使用MEDLINE数据库(通过PubMed)和检索参考文献确定。经筛选后,20篇文章被纳入本综述。

关键内容及发现:在所选研究中,回顾性研究的随访时间最长为16年,前瞻性研究的随访时间最长为5年。研究报道的最高C/I-R为2.53。

结论:总之,可以说C/I-R不超过2.2不会影响生物并发症的表现,并导致不显著的MBL。

关键词:种植体冠根比(C/I-R);边缘骨吸收(MBL);短种植体


Received: 01 September 2020; Accepted: 15 October 2020; Published: 20 November 2020.

doi: 10.21037/fomm-20-57


前言

如今,种植牙被认为是替代天然牙的可靠解决方案。目前已经实现了种植体和修复体的高存活率(5年后在98%以上)[1,2]。成功的种植治疗,从种植体水平考量的标准是:无疼痛,第一年垂直向骨吸收<1.5 mm,此后每年<0.2 mm,种植体周围无射线透射影,种植体无松动,无感染[3]。因此,边缘骨吸收(MBL)是种植体长期稳定性的一种有利因素[4]。不利的种植体冠根比(C/I-R)、咬合过载、后牙咀嚼面宽度、离轴载荷和悬臂是导致种植修复治疗失败的因素[5-7]。悬臂[8]、咬合过载[9]和离轴载荷对修复并发症的影响已在很大程度上得到证实。

然而,C/I-R 对 MBL 的影响尚不清楚。C/I-R是冠根比的修复参数在种植学中的应用。理想情况下,基牙牙冠与牙根的比例应为 1:2,至少为 1:1。为了避免不利的 C/I-R,这些修复概念已用于种植牙科学。C/I-R 是指牙冠和种植体长度之间的比例。我们可以区分两种不同的C/I-R:

  • 解剖比是指种植体根尖到种植体肩台的距离与种植体肩台到牙冠末端的距离的比值;
  • 临床比是指根尖到骨水平的距离与骨水平到牙冠末端的距离的比值。

在文献中,有证据证明MBL和C/I-R之间存在关系[10],也有认为不存在[11,12]关系,一项研究甚至推断高CI可能对骨质吸收提供保护作用[13]。此外,为避免骨增量手术引入的短种植体,导致C/I-R越来越高。应研究安全阈值以避免生物并发症并保证治疗成功。本研究旨在阐明C/I-R在MBL中的作用。我们根据叙述性综述报告清单(可从https://fomm.amegroups.com/article/view/10.21037/fomm-20-57/rc 获得)呈现以下文章。


方法

所选文献通过MEDLINE数据库(通过PubMed)结合关键词:“种植体冠根比”、“边缘骨吸收”、“牙槽骨吸收、“短种植体”进行识别。对相关综述的参考文献进行了补充检索。纳入的研究必须满足以下要求:

  • 至少随访1年;
  • 应报告平均 C-I/R;
  • 结果测量应至少包括骨质改变;
  • 出版物必须用英文报道。

文章的选择路径如图1所示。

图1
图1 Flowchart of study selection.

讨论总结

最初通过MEDLINE搜索确定了87项研究。查阅相关综述发现另外5篇符合纳入标准的文章。在删除重复项并分析标题和摘要后,58项研究因不符合纳入标准而被排除。其余29篇论文通过全文分析进行评估。由于缺乏边缘骨变化和C/I-R测量等信息,在全文阅读后最终排除了9篇文章。所选研究的特征见表1表2。Anitua等[14]在一项回顾性研究中分析了45个平均C/I-R 为2.4的种植体,报告的平均MBL为近中骨质1.01 mm,远中骨质0.89 mm。Birdi等[15]在一项回顾性研究中研究了309个种植体,平均C/I-R为2.0,平均MBL为0.2 mm。Blanes等[16]在一项前瞻性研究中分析了109个平均C/I-R为1.77的种植体,分别计算了3个不同组别的 MBL:A组(C/I-R 0–0.99):0.35 mm,B组(C/I-R 1–1.99):0.03 mm,C组(C/I-R >2):0.02 mm。De Fiore等[17]回顾性研究了108个种植体,平均 C/I-R为2.21,报告的平均MBL为1.42 mm。Guljé等[18]在一项前瞻性研究中分析了 47 个种植体,平均C/I-R为 2.14,报告的MBL为0.13 mm。Hadzik等[19]对C/I-R为1.69的30个种植体进行了前瞻性研究,报告的MBL为0.34 mm。Hingsammer等[20]在一项前瞻性研究中分析了76个种植体,平均C/I-R为 1.70,MBL为 0.71 mm。Lee等[21]回顾性研究了175个种植体,平均C/I-R为1.06,报告的MBL为 0.93 mm。Malchiodi等[22]在一项前瞻性研究中分析了280个种植体,解剖冠根比和临床冠根比分别为1.84 和2.08,MBL为0.48 mm。Mangano等[23]对68个种植体进行了前瞻性研究,平均C/I-R为 1.70。负荷5年后,C/I <2和C/I >2组报告的平均MBL分别为0.38 mm和0.48 mm。Naenni等[24]在一项前瞻性队列研究中分析了96个种植体,6 mm组的平均C/I-R为1.75,10 mm组的平均C/I-R为1.04,6 mm组平均MBL为0.29 mm,10 mm组MBL为0.15 mm。Nunes等[25]回顾性研究了118个种植体,平均C/I-R为2.53,MBL为0.67 mm。Pieri等[26]在一项前瞻性研究中分析了61个平均C/I-R为1.94 mm的种植体,2年时计算的MBL为0.60 mm。Ramaglia等[27]对平均C/I-R为1.08 的78个种植体进行了前瞻性研究,C/I-R <1 和C/I-R>1 组的5年MBL分别为 0.653 mm 和 0.287 mm。Rossi等[28]在一项前瞻性研究中设置了2组,每组30个种植体:实验组和对照组的平均C/I-R分别为 1.55 和 0.97,负载5年后,实验组MBL为0.14 mm,对照组为0.18 mm。Schneider等[29]在一项回顾性研究中分析了100个种植体,解剖冠根比和临床冠根比分别为1.04和1.48,MBL为0.008 mm。Sharmann等[30]前瞻性分析了2组不同的种植体,每组47个:对照组平均C/I-R为0.86,实验组为1.48,3年后实验组和对照组的平均MBL分别为0.19 mm和0.33 mm。Urdaneta等[31]在一项回顾性研究中分析了326颗平均C/I-R为1.6的种植体,平均MBL为0.33 mm。Villarinho等[32]前瞻性分析了46个种植体,平均C/I-R为1.6,MBL为0.3 mm。Zadeh等[33]对209个种植体进行了为期3年的前瞻性分析,分为2组:测试组的C/I-R为1.78,对照组为0.93,MBL的分析显示,测试组增加了0.04 mm,而对照组减少了0.02 mm。总体而言,回顾性研究的最长随访时间为16年,前瞻性研究为5年,报告的最高C/I-R为2.5。

表1
表1 Studies included in the review
Full table
表2
表2 Studies included in the review—part 2
Full table

在生物力学上,不利的C/I-R可能会通过杠杆机制影响边缘骨。当受到侧向力时,杠杆臂长的种植修复体会在骨嵴处产生更大的应力。在悬臂模型中已经证明,冠高从10 mm增加到20 mm,可导致力矩成比例增加[34]。C/I-R的计算方法为牙冠和种植体长度之间的比率。我们可以区分两种不同的C/I-R:

  • 解剖冠根比:种植体根尖到肩台的距离与种植体肩台到牙冠末端的距离的比值;
  • 临床冠根比:根尖到骨水平的距离与骨水平到牙冠末端的距离的比值。

由于骨的粘弹性,种植体-骨界面的刚性低于种植体肩台的连接[16],因此临床冠根比被认为是更准确的。在本综述纳入的研究中,许多研究得出结论:C/I-R与MBL之间的关系并不显著。Urdaneta等[31]得出结论:较大的C/I-R导致修复体并发症的增加,但对MBL没有显著影响。在此项研究中,16%样本的C/I-R>2。Nunes等[25]发现C/I-R和MBL之间存在弱的负相关。Blanes等[16]表示C/I-R和MBL之间没有统计关系。Birdi等[15]发现C/I-R与初期骨结合间没有显著关系。Schneider等[29]得出结论,C/I-R与MBL、机械和生物并发症以及种植体存活率没有显著相关性。Mangano等[23]发现MBL和C/I-R随时间没有相关性,CI 比值每增加0.1,1年骨吸收增加0.023 mm。然而,其他研究发现C/I-R和MBL之间存在更强的相关性。Di Fiore等[17]发现,在多变量分析中,C/I-R> 2与更高的MBL相关。据估计,C/I-R>2导致MBL增加0.28 mm。然而,作者强调,这种增加可能被认为与临床无关。Hingsammer等[20]得出的结论是,0.71 mm的MBL被认为是令人满意的,1.7的C/I-R可以被视为避免早期边缘骨改变的阈值。Malchiodi等[22]表明C/I-R>2的种植体的MBL为 0.72 mm。统计分析表明,解剖和临床C/I-R与MBL相关。作者得出结论,从生物力学的角度来看,为避免过度骨质流失,解剖学和临床C/I-R分别不应超过3.1和3.4。可以看出,C/I-R是与种植体成功和牙槽嵴顶吸收相关的主要因素。

所有这些发现之间的差异可以在各个方面找到。许多研究将不同长度的种植体混合在一起;此外,短种植体的定义也没有标准化:Tawil和Younan认为<10 mm者为短种植体[35];Nisand和Renouard定义长度<8 mm为短种植体,长度<5 mm为超短种植体[36]。由于种植体的长度似乎与杠杆机制无关,因此可能显著相关的部分是牙冠。在前面提到的许多研究中,没有考虑冠高空间(Crown-Height-Space,CHS)与C/I-R的关系。Anitua等[14]分析了45个超短种植体,平均C/I-R为2.4,平均CHS为17.05 mm。结果表明,MBL<2 mm的种植体的平均CHS为17 mm,而MBL>2 mm的种植体的平均CHS为21 mm。统计分析显示,CHS与骨质吸收呈正相关。Nissan等[37]在一项体外研究中发现,在 30 °离轴载荷情况下,牙冠高度从6 mm增加到12 mm,决定了应力分布成比例增加(17.72增加到30.09兆帕)。高于15 mm的CHS被认为是生物力学不利,导致骨水平的压力增加。当力施加在30°时,在CHS> 15 mm和C/I-R为1.75时观察到失败。作者得出结论,在评估与生物力学相关的不利影响时,CHS 比C/I-R更显著,关于C/I-R影响的研究应在其结果中同时提及种植体长度和CHS。

在本综述中,既考虑了夹板式种植修复,也考虑了非夹板式种植修复。许多研究强调,将牙冠用夹板固定在一起可以更好地分散非轴向力,最大限度地减少它们对修复体和骨的负荷,并增加负荷面积[7]。此外,建议在骨质差的情况下使用夹板,以减少水平负载下的边缘骨应力[38]。因此,夹板式种植修复可以改变C/I-R对MBL的实际影响,减少颈部应力,从而实现更好的力分布。然而,在一项体外研究中,Nissan等[37]证明夹板式种植修复可导致更严重的牙槽嵴骨质流失。

总之,根据 EAO[39]最近的共识,可以说C/I-R不超过 2.2不会影响种植修复生物学并发症的可能性,且无显著的MBL。进一步的研究应该调查更高比率的并发症、夹板式种植修复对力分布的影响以及牙冠高度对MBL的作用。


Acknowledgments

Funding: None


Footnote

Reporting Checklist: The authors have completed the Narrative Review reporting checklist. Available at https://fomm.amegroups.org/article/view/10.21037/fomm-20-57/rc

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://fomm.amegroups.org/article/view/10.21037/fomm-20-57/coif). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.


References

  1. Papaspyridakos P, Bordin TB, Natto ZS, et al. Complications and survival rates of 55 metal-ceramic implant-supported fixed complete-arch prostheses: A cohort study with mean 5-year follow-up. J Prosthet Dent 2019;122:441-9. [Crossref] [PubMed]
  2. Pjetursson BE, Thoma D, Jung R, et al. A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin Oral Implants Res 2012;23:22-38. [Crossref] [PubMed]
  3. Papaspyridakos P, Chen CJ, Singh M, et al. Success Criteria in Implant Dentistry: A Systematic Review. J Dent Res 2012;91:242-8. [Crossref] [PubMed]
  4. Simons WF, De Smit M, Duyck J, et al. The proportion of cancellous bone as predictive factor for early marginal bone loss around implants in the posterior part of the mandible. Clin Oral Implants Res 2015;26:1051-9. [Crossref] [PubMed]
  5. Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10:326-34. [PubMed]
  6. Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants 2000;15:15-46. [PubMed]
  7. Kim Y, Oh TJ, Misch CE, et al. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale: Occlusal consideration in implant therapy. Clin Oral Implants Res 2005;16:26-35. [Crossref] [PubMed]
  8. Zurdo J, Romão C, Wennström JL. Survival and complication rates of implant-supported fixed partial dentures with cantilevers: a systematic review. Clin Oral Implants Res 2009;20:59-66. [Crossref] [PubMed]
  9. Leung KC, Chow TW, Wat PY, et al. Peri-implant bone loss: management of a patient. Int J Oral Maxillofac Implants 2001;16:273-7. [PubMed]
  10. Ozgur GO, Kazancioglu HO, Demirtas N, et al. Risk factors associated with implant marginal bone loss: a retrospective 6-year follow-up study. Implant Dent 2016;25:122-7. [Crossref] [PubMed]
  11. Tawil G, Aboujaoude N, Younan R. Influence of prosthetic parameters on the survival and complication rates of short implants. Int J Oral Maxillofac Implants 2006;21:275-82. [PubMed]
  12. Quaranta A, Piemontese M, Rappelli G, et al. Technical and biological complications related to crown to implant ratio: a systematic review. Implant Dent 2014;23:180-7. [Crossref] [PubMed]
  13. Garaicoa-Pazmiño C, Suárez-López del Amo F, Monje A, et al. Influence of crown/implant ratio on marginal bone loss: a systematic review. J Periodontol 2014;85:1214-21. [Crossref] [PubMed]
  14. Anitua E, Alkhraist M, Piñas L, et al. Implant Survival and Crestal Bone Loss Around Extra-Short Implants Supporting a Fixed Denture: The Effect of Crown Height Space, Crown-to-Implant Ratio, and Offset Placement of the Prosthesis. Int J Oral Maxillofac Implants 2014;29:682-9. [Crossref] [PubMed]
  15. Birdi H, Schulte J, Kovacs A, et al. Crown-to-Implant Ratios of Short-Length Implants. Journal of Oral Implantology 2010;36:425-33. [Crossref] [PubMed]
  16. Blanes RJ, Bernard JP, Blanes ZM, et al. A 10-year prospective study of ITI dental implants placed in the posterior region. II: Influence of the crown-to-implant ratio and different prosthetic treatment modalities on crestal bone loss. Clin Oral Implants Res 2007;18:707-14. [Crossref] [PubMed]
  17. Di Fiore A, Vigolo P, Sivolella S, et al. Influence of Crown-to-Implant Ratio on Long-Term Marginal Bone Loss Around Short Implants. Int J Oral Maxillofac Implants 2019;34:992-8. [Crossref] [PubMed]
  18. Guljé FL, Raghoebar GM, Erkens WA, et al. Impact of Crown-Implant Ratio of Single Restorations Supported by 6-mm Implants: A Short-Term Case Series Study. Int J Oral Maxillofac Implants 2016;31:672-5. [Crossref] [PubMed]
  19. Hadzik J, Krawiec M, Sławecki K, et al. The Influence of the Crown-Implant Ratio on the Crestal Bone Level and Implant Secondary Stability: 36-Month Clinical Study. Biomed Res Int 2018;2018:4246874. [Crossref] [PubMed]
  20. Hingsammer L, Watzek G, Pommer B. The influence of crown-to-implant ratio on marginal bone levels around splinted short dental implants: A radiological and clinical short term analysis. Clin Implant Dent Relat Res 2017;19:1090-8. [Crossref] [PubMed]
  21. Lee KJ, Kim YG, Park JW, et al. Influence of crown-to-implant ratio on peri-implant marginal bone loss in the posterior region: a five-year retrospective study. J Periodontal Implant Sci 2012;42:231. [Crossref] [PubMed]
  22. Malchiodi L, Cucchi A, Ghensi P, et al. Influence of crown-implant ratio on implant success rates and crestal bone levels: a 36-month follow-up prospective study. Clin Oral Implants Res 2014;25:240-51. [Crossref] [PubMed]
  23. Mangano F, Frezzato I, Frezzato A, et al. The Effect of Crown-to-Implant Ratio on the Clinical Performance of Extra-Short Locking-Taper Implants. J Craniofac Surg 2016;27:675-81. [Crossref] [PubMed]
  24. Naenni N, Sahrmann P, Schmidlin PR, et al. five-year survival of short single-tooth implants (6 mm): a randomized controlled clinical trial. J Dent Res 2018;97:887-92. [Crossref] [PubMed]
  25. Nunes M, Almeida R, Felino A, et al. The Influence of Crown-to-Implant Ratio on Short Implant Marginal Bone Loss. Int J Oral Maxillofac Implants 2016;31:1156-63. [Crossref] [PubMed]
  26. Pieri F, Aldini NN, Fini M, et al. Preliminary 2-year report on treatment outcomes for 6-mm-long implants in posterior atrophic mandibles. Int J Prosthodont 2012;25:279-89. [PubMed]
  27. Ramaglia L, Di Spirito F, Sirignano M, et al. A 5-year longitudinal cohort study on crown to implant ratio effect on marginal bone level in single implants. Clin Implant Dent Relat Res 2019;21:916-22. [Crossref] [PubMed]
  28. Rossi F, Botticelli D, Cesaretti G, et al. Use of short implants (6 mm) in a single-tooth replacement: a 5-year follow-up prospective randomized controlled multicenter clinical study. Clin Oral Implants Res 2016;27:458-64. [Crossref] [PubMed]
  29. Schneider D, Witt L, Hämmerle CHF. Influence of the crown-to-implant length ratio on the clinical performance of implants supporting single crown restorations: a cross-sectional retrospective 5-year investigation: Influence of the c/i ratio on the performance of implants supporting single crown restorations. Clin Oral Implants Res 2012;23:169-74. [Crossref] [PubMed]
  30. Sahrmann P, Naenni N, Jung RE, et al. Success of 6-mm Implants with Single-Tooth Restorations: A 3-year Randomized Controlled Clinical Trial. J Dent Res 2016;95:623-8. [Crossref] [PubMed]
  31. Urdaneta RA, Rodriguez S, McNeil DC, et al. The effect of increased crown-to-implant ratio on single-tooth locking-taper implants. Int J Oral Maxillofac Implants 2010;25:729-43. [PubMed]
  32. Villarinho EA, Triches DF, Alonso FR, et al. Clin Implant Dent Relat Res 2017;19:671-80. [Crossref] [PubMed]
  33. Zadeh HH, Guljé F, Palmer PJ, et al. Marginal bone level and survival of short and standard-length implants after 3 years: An Open Multi-Center Randomized Controlled Clinical Trial. Clin Oral Implants Res 2018;29:894-906. [Crossref] [PubMed]
  34. Misch CE, Goodacre CJ, Finley JM, et al. Consensus conference panel report: crown-height space guidelines for implant dentistry-part 2. Implant Dent 2006;15:113-21. [Crossref] [PubMed]
  35. Tawil G, Younan R. Clinical evaluation of short, machined-surface implants followed for 12 to 92 months. Int J Oral Maxillofac Implants 2003;18:894-901. [PubMed]
  36. Nisand D, Renouard F. Short implant in limited bone volume. Periodontol 2000 2014;66:72-96. [Crossref] [PubMed]
  37. Nissan J, Gross O, Ghelfan O, et al. The Effect of Splinting Implant-Supported Restorations on Stress Distribution of Different Crown-Implant Ratios and Crown Height Spaces. J Oral Maxillofac Surg 2011;69:2990-4. [Crossref] [PubMed]
  38. Wang TM, Leu LJ, Wang J, et al. Effects of prosthesis materials and prosthesis splinting on peri-implant bone stress around implants in poor-quality bone: a numeric analysis. Int J Oral Maxillofac Implants 2002;17:231-7. [PubMed]
  39. Hämmerle CHF, Cordaro L, Alccayhuaman KAA, et al. Biomechanical aspects: Summary and consensus statements of group 4. The 5th EAO Consensus Conference 2018. Clin Oral Implants Res 2018;29:326-31. [Crossref] [PubMed]
译者介绍

窦嘉琪
上海交通大学口腔医学院2017级口腔医学八年制学生。(更新时间:2022-05-25)
审校介绍
赵泽亮
口腔临床医学博士,主治医师,毕业于上海交通大学医学院附属第九人民医院,The University of Alabama at Birmingham访问学者。目前主要从事口腔种植与修复,前牙美学区种植修复,骨量不足的种植解决方案。中华口腔医学会口腔种植专业委员会委员,中华口腔医学会口腔颌面创伤与正颌专业委员会委员。多次在国内外学术会议作口头报告。发表学术论文9余篇,其中SCI收录论文5篇。参译口腔医学学术专著3部。参研国家自然科学基金3项。(更新时间:2022-05-25)

(本译文仅供学术交流,实际内容请以英文原文为准。)

doi: 10.21037/fomm-20-57
Cite this article as: Di Fiore A, Maniero F, Stellini E. The influence of crown-to-implant ratio on marginal bone loss: a narrative review. Front Oral Maxillofac Med 2020;2:29.

Download Citation