
Page 1 of 12

© Frontiers of Oral and Maxillofacial Medicine. All rights reserved. Front Oral Maxillofac Med 2023;5:20 | https://dx.doi.org/10.21037/fomm-21-70

Review Article

Genetic factors underlying basal cell carcinoma risk: a narrative 
review

Sitong Ju1, Wanlin Fan1, Alexander C. Rokohl1,2, Yongwei Guo3, Vinodh Kakkassery4, Ludwig M. Heindl1,2

1Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; 2Center 

for Integrated Oncology (CIO) Aachen – Cologne – Bonn – Duesseldorf, Cologne, Germany; 3Eye Center, Second Affiliated Hospital, School of 

Medicine, Zhejiang University, Hangzhou, China; 4Department of Ophthalmology, University of Lübeck, Lübeck, Germany

Contributions: (I) Conception and design: S Ju, W Fan, Y Guo, LM Heindl; (II) Administrative support: AC Rokohl, Y Guo, LM Heindl; (III) 

Provision of study materials or patients: S Ju, W Fan, V Kakkassery, AC Rokohl, LM Heindl; (IV) Collection and assembly of data: All authors; (V) 

Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Prof. Ludwig M. Heindl, MD, PhD, M.Sc. Department of Ophthalmology, University of Cologne, Faculty of Medicine and 

University Hospital of Cologne, Kerpenerstr, 62, 50937 Cologne, Germany. Email: ludwig.heindl@uk-koeln.de.

Background and Objective: Basal cell carcinoma (BCC) is the most common type of malignant tumor and 
a subtype of non-melanoma skin cancer (NMSC). It has a slow progression, metastasizes extremely rarely, 
but sometimes causes severe local tissue destruction. The constantly increasing incidence of BCC results 
from a complex interaction between environmental, genetic, and other risk factors. Several oncogenes and 
antioncogenes have been proved to be involved in BCC pathogenesis, including the vital effector portions of 
the hedgehog (HH) signaling pathway (i.e., PTCH1, PTCH2, SMO or SUFU genes), MC1R, and TP53. HH 
signaling pathway dysregulation is related to dysplasia and carcinoma, including Gorlin syndrome (GS) and 
sporadic cancers. Mutations caused by ultraviolet (UV) light and/or copy-loss heterozygosity of related genes 
lead to the abnormal signaling pathway activation, responsible for over 90% of the BCC cases. This review 
intends to provide a revision of the genetic factors affecting BCC. 
Methods: The PubMed database was searched with a search algorithm [(basal cell carcinoma) OR (BCC)] 
AND [(gene) OR (pathway)], till May 2021, to filter out relevant publications. Relevant researches omitted 
from this search algorithm were also selected from the specific full-text papers reference lists. No language 
restrictions included in our search.
Key Content and Findings: This review provides a revision of several potential mechanisms that may 
involve in BCC carcinogenesis. Some genetic agents have been considered the risk factors for BCC, 
including the vital effector portions of the HH signaling pathway, MC1R, and TP53. Certain inherited 
disorders, including Gorlin syndrome, xeroderma pigmentosum, and Bazex-Dupré-Christol syndrome, are 
considered genetic risk factors for BCC, predisposing BCC at an early age. Other genes, such as BRCA1, 
BRCA2, CTLA-4, AS3MT, N-Myc and Hippo-YAP pathway target genes (MYCN PTPN14, PPP6C, STK19, 
LATS1) also show the potential relevance in BCC tumorigenesis and progression.
Conclusions: The hereditary basis of BCCs can vary from targeted mutations in the HH signaling 
pathway to deficiencies of tumor suppressors and melanin synthesis. These may lead to DNA damage and 
promotes BCC growth. The knowledge and characterization of the BCC genetic factors could underlie the 
development of new therapies.
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Introduction 

Basal cell carcinoma (BCC) is the most prevalent form of 
malignant skin cancer with a good prognosis, originating 
from the basal layer of the epidermis and its appendages (1-4).  
Some clinical features, e.g., rodent ulcers, telangiectasias, 
pigmented and erosion areas, can be considered a 
characteristic of this disease (5,6). The incidence rates of 
BCC worldwide increase continuously owing to an aging 
population and widespread sun exposure. Still, the incidence 
estimation is imprecise since few population-based cancer 
registries and active nationwide surveillance systems exist 
in most countries and regions for monitoring and reporting 
the incidence of BCC (7,8). While BCC’s biological 
mechanism(s) is still unclear, environmental and genetic 
factors are primarily related to its pathogenesis (9,10). Some 
genetic agents have been considered the risk factors for BCC, 
e.g., Patched 1 (PTCH1) genes. In most cases, keratinocyte 
transformation occurs when the function of multiple genes 
(proto-oncogenes, tumor suppressor genes, and essential 
housekeeping genes) affected by mutations, causing 
hyperactivation of the HH protein family, leading to cell 
cycle deregulation, implicated as drivers in BCC formation 
(11,12). Moreover, the TP53 tumor suppressor gene is also 
commonly involved in the pathogenesis of BCC (3).

Therefore, this review provides an overview of BCC’s 
genetic pathogenesis. In this review, the PubMed database 
was searched with a search algorithm [(basal cell carcinoma) 
OR (BCC)] AND [(gene) OR (pathway)] to filter out 
relevant publications. Relevant researches omitted from 
this search algorithm were also selected from the specific 
full-text papers reference lists. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://fomm.amegroups.com/article/
view/10.21037/fomm-21-70/rc).

Methods

The PubMed database was searched with a search algorithm 
[(basal cell carcinoma) OR (BCC)] AND [(gene) OR 
(pathway)], till May 2021, to filter out relevant publications. 
Relevant researches omitted from this search algorithm 
were also selected from the specific full-text papers 
reference lists. No language restrictions included in our 
search (Table 1).

Hedgehog (HH) signaling pathway

The HH signaling pathway, i.e., the Hedgehog-Patched-

Smoothened (Hh-Ptch-Smo), is an evolutionarily conserved 
pathway of signal transmission from the cell membrane 
to the nucleus, plays a vital role in the normal embryonic 
development of vertebrates (13) (Figure 1). Generally, the 
HH pathway is only active during embryonic development. 
A secreted protein, sonic HH ligand, binds to the 
transmembrane regulator receptor protein PTCH1 and 
inactivates it (14). Thus, the pathway is primarily inactive 
or poorly active in the adult organism. However, it can be 
activated in somatic and pluripotent stem cells in specific 
circumstances, such as tissue repair (15-17). 

Malfunction or unusual activation of the pathway is 
associated with dysplasia and carcinogenesis (18-20). It 
behaves differently in different stages of various tumors, 
such as Gorlin syndrome (GS) (also known as Nevoid Basal 
Cell Carcinoma Syndrome, NBCCS), sporadic BCC, and 
medulloblastomas (21), among others. Gene variations 
(ligand-independent signaling) or HH signaling molecules 
overexpression (ligand-dependent signaling—autocrine or 
paracrine) can lead to aberrant activation of the pathway (22).

There are three proteins—HH ligand, PTCH, and 
Smoothened (SMO)—that participate in the activation of 
HH signaling (23). 

The HH signaling pathway could be activated by SMO-
activating variants or inactivating variants of PTCH1 
or SUFU (HH signaling negative regulator), leading to 
constitutive activation of HH signaling without ligand (24).  
This connection was first found in GS patients with a 
PTCH1 mutation on chromosome 9 (14). According to 
the HH model, SMO repression is relieved following 
mutational inactivation of PTCH1  (25). Sonic HH (SHH), 
which is the strongest pathway activator, bind to PTCH1 
and remove it from primary cilium and result in stimulation 
of SMO, triggers the activation of the transcription factors 
Gli1 (glioma-associated oncogene homolog) and/or Gli2 
(26-30), resulting in cell proliferation. It has been involved 
in the development of BCC and other tumors, especially 
meningiomas and rhabdomyosarcomas (21).

Germline or somatic inactivating (loss-of-function) 
mutations of PTCH1, PTCH2, or SUFU, the activating 
(gain of function) mutations of SMO, or the amplification 
of GLI2 lead to the aberrant activation of HH (31), are 
responsible for over ninety percent of BCC cases in both 
sporadic BCC and GS. Mutations in the SUFU gene are the 
least common type have been seen in sporadic BCC (24) 
and specific hereditary syndromes, e.g., a subset of Gorlin 
BCC cases (5%) (32), multiple congenital infundibulocystic 
BCC syndrome cases (33), as well as some childhood-

https://fomm.amegroups.com/article/view/10.21037/fomm-21-70/rc
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medulloblastoma families with “Gorlin-like” phenotype 
and hamartomatous skin lesions (34). Thus, there are 
three types of medulloblastoma caused by the aberrant 
activation of the HH signaling pathway: (I) NBCCS with 
SUFU mutations (20-fold increased risk than in the classic 
form) (32,35); (II) (a classic form of) NBCCS with PTCH1 
mutations, and (III) NBCCS with PTCH2 mutations (a 
milder form than the previous one) (36). Incidentally, the 
PTCH2 gene mutation may also be the cause of sporadic 
BCC or sporadic medulloblastoma (37).

PTCH 

PTCH is the receptor for HH protein, and two PTCH 
homologs have been isolated in vertebrates: PTCH1 and 

PTCH2 (38), both encode transmembrane receptors of the 
patched gene family in the SHH pathway and have diverse 
functions depending on their differential expression in 
epidermal development (26,39). 

PTCH1 gene, primarily expressed in mesenchymal cells, 
is located on chromosome 9q22.3. It contains twenty-three 
exons and encodes a glycoprotein of 1,447 amino acids. 
PTCH1 binds to SHH proteins resulting in the stimulation 
of SMO, which acts as a transmembrane receptor of the 
HH signaling pathway and directs the embryonic growth of 
various organs in vertebrates (13,14,40). Its dysregulation is 
known to be essential in tumorigenesis, including BCC (41). 

The most common PTCH1 mutations were frameshifts 
resulting in premature chain termination, which can cause 
premature termination of the PTCH protein (42-45). A 
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Figure 1 Hedgehog (HH) signaling pathway.

Table 1 The search strategy summary

Items Specification

Date of search 04 May 2021

Databases and other sources searched PubMed

Search terms used [(basal cell carcinoma) OR (BCC)] AND [(gene) OR (pathway)]

Timeframe Till 04 May 2021

Inclusion and exclusion criteria No searching restrictions

Selection process All search and selection were done by Sitong Ju independently
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recent survey found that PTCH1 had two mutated states—
germinal and somatic mutation. More than 70% of patients 
with sporadic BCCs and xeroderma pigmentosum (XP) 
related BCCs detect somatic mutations of PTCH1, suggesting 
that abnormal activation of HH signaling is a precondition 
for both BCC associated with the GS and sporadic BCCs 
development (11,24,46-50).

Furthermore, a study shows that the PTCH1 expression 
level was higher in BCC with both mutation types than 
those with only germinal mutations (51). National 
Cancer Institute of USA evaluated 18 NBCCS families 
with whole-exome sequencing and revealed that eighty-
nine percent of these families expressed disease-causing 
mutations in PTCH1 (52). Similarly, Undén et al. also 
identified that PTCH1 mRNA was over-expressed in BCC 
cells compared to the expression level in non-tumorous 
epidermal cells (53). 

The PTCH2 gene is a protein-coding gene located 
on 1p34.1.  It  encodes a 1203-amino acid protein 
(transmembrane receptors) of the patched gene family 
in the SHH pathway, mainly expressed in the skin and 
testicular epithelial cells (54). Previously, a Chinese Han 
family with NBCCS carrying a heterozygous germline 
missense mutation in PTCH2 was reported by Fan et al. (55). 
And Fujii et al. reported a 13-year-old girl diagnosed with 
NBCCS based on multiple keratocystic odontogenic tumors 
and rib anomalies, who carried a frameshift mutation in the 
PTCH2 gene (c.1172_1173delCT) suggested that PTCH2 
variants can also cause NBCCS, albeit with a milder 
phenotype (36). However, a healthy female with a PTCH2 
homozygous frameshift variant was reported, and she did 
not have any of the symptoms included in the diagnostic 
criteria for NBCCS (56). Whether PTCH2 variants are 
associated with NBCCS is still unclear, as the number 
of cases with PTCH2 mutations remains limited. The 
accumulation of such patients is expected to clarify their 
characteristic phenotype further.

TP53 

TP53 is the second essential gene in BCC carcinogenesis. 
It maintains genomic stability by encoding the P53 
protein that regulates the cell cycle, induces apoptosis, 
and activates DNA repair. Mutations of TP53 have been 
identified in 20 to over 60 percent of sporadic BCCs (11). 
It is known that P53 is related to the early development 
of many different types of cancer, including BCC. And 
the loss of heterozygosity (LOH) of P53 appears mutually 

exclusive with PTCH1 (11). Furthermore, P53 protein 
is involved in the aging process of keratinocytes, and a 
function of the protein may facilitate BCCs growth in  
this case (11).

Ultraviolet (UV) radiation exposure as a leading 
environmental agent can result in several oncogenes and 
anti-oncogenes mutations implicated as drivers in BCC 
formation (4,11,57). The pattern of genetic mutations 
involved in BCC pathogenesis is consistent with DNA 
mutations caused by ultraviolet (UVA and UVB), owing 
to the “UV signature” mutations they harbored (58,59). 
Cyclobutane dimers and pyrimidine (6–4) pyrimidone 
photoproducts [6-4PPs, repaired through a process known 
as nucleotide excision repair (NER) after damage] (60) 
are used for UV landmark producing (C to T or CC 
to TT transversions) (61,62). Within these genes, the 
mutational profiles of BCCs reveal evidence of UV-induced 
mutagenesis. In most cases, mutations identified in both 
the HH/Patched/SMO pathway and TP53 are consistent 
with UV radiation-induced mutagenesis (63), which shows 
that repairing UV-induced DNA damage can reduce 
the carcinogenicity of BCC. In addition to UV-induced 
changes, other factors are also linked to mutations in BCCs, 
such as oxidative stress (11,46).

Besides BCC-specific mutational drivers (PTCH1, TP53), 
there are pigmentary-traits-determined genes relevant 
for germline polymorphisms, including melanocortin-1 
receptor (MC1R), the human homolog of agouti signaling 
protein gene (ASIP), and tyrosinase (TYR). The increased 
risk of BCC development is associated with single 
nucleotide polymorphisms, in which ASIP and TYR genes 
are involved and responsible for the regulation of melanin 
hormones (64-66). 

Personal and/or family history of skin cancer, coupled 
with fair complexion, light/red hair color, light eye 
color, and poor tanning ability (high sensitivity to UV 
exposure), are well-known BCC risk factors (7,67-69).  
Pigmentation is  a  multigenic trait ,  and MC1R, a 
membrane G coupled protein involved in melanin 
production, is a major factor in determining skin and hair 
color (70). Several studies indicate that mutations of the 
MC1R gene are significantly associated with BCC risk 
and exert carcinogenic pigmentation-independent effects 
(65,66,71). A family history of skin cancer is closely 
related to an increased risk of developing BCC under 40 
(odds ratio 2.49, 95% CI: 1.80–3.45), independent of the 
MC1R phenotype (72).

Tyrosinase, encoded by TYR gene, is located on the 
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human chromosome 11q14-q21 (73). Tyrosinase is a 
copper-containing enzyme and plays an important role 
in melanin production by catalyzing the oxidation of 
tyrosine to dopamine (DOPA), DOPA to L-dopaquinone, 
and 5,6-dihydroxyindole to 5,6-in-dolequinone in skin, 
hair, and eye (74). Mutations in the TYR gene may cause 
oculocutaneous albinism (OCA), a genetic disorder 
related to a higher risk of non-melanoma skin cancer 
(NMSC) (64).

Concerning multiple BCCs genetic susceptibilities, 
several studies have found an association between main 
factors, such as the number of BCCs, the vitamin D 
receptor, tumor necrosis factor, polymorphisms shown 
by the cytochrome P-450 (CYP2D6) and the glutathione 
S-transferase (GST) supergene family. The importance of 
these factors in cellular mechanisms such as metabolism 
and detoxification has been proved (75-78). However, 
the connection between these genetic polymorphisms, 
oncogenesis, and the clinical phenotype remains unclear.

Several pieces of research have identified genetic 
variants that may affect BCC risks (79-82). For example, a 
genome-wide association meta-analysis reveals that single 
nucleotide polymorphisms in genes participating in DNA 
excision repair may be involved in the etiopathogenesis  
of BCC (83).

Inherited disorders 

Certain inherited disorders, including GS, XP, and Bazex-
Dupré-Christol syndrome (BDCS), are considered genetic risk 
factors for BCC, predisposing BCC at an early age (84-86). 

GS

GS is a rare multi-system disorder of autosomal dominant 
inheritance. In most cases, caused by germline inactivating 
mutations of the human PTCH1 on the chromosome 
9q22.3–q31, infrequently by mutations in the SUFU 
gene and  PTCH2. It is distinguished by dysplasia and 
postnatal tumors, including odontogenic keratocysts, 
medulloblastoma, and multiple BCCs with an average age 
of 20 to 21 (36,55,87-89). The incidence of GS ranges from 
1:56,000 to 1:164,000 among the general population (84). 

XP 

XP is a rare autosomal recessive disorder. Mutations in 
genes involved in repairing UV-induced DNA damage are 

the primary pathogenesis of XP, and mutations in XPA, C, 
and V were detected in 75% of all patients (90). Clinical 
features include early-onset pigmented skin changes and 
the early development of skin cancers. According to a  
39-year follow-up study of 106 XP patients conducted by 
the National Institutes of Health (NIH, USA), 69 (65%) 
patients with skin cancer have a higher risk of suffering 
from NMSC and melanoma than the general population. 
Moreover, the median age at first diagnosis of NMSC was 
significantly younger than melanoma (91).

Bazex-Dupré-Christol syndrome

This syndrome is  an X-linked dominant disorder 
characterized by congenital hypotrichosis, follicular 
atrophoderma, and multiple BCCs (92). It may be 
accompanied by milia, ichthyosis, neurological symptoms, 
and visceral malignancies (93). According to the latest 
research, the BDCS gene is localized on the Xq25-27.1 and 
yet unspecified.

Rombo syndrome

In 1981, Michaëlsson et al.  (88) described Rombo 
syndrome for the first time. An autosomal dominant 
inheritance across at least four generations was detected, 
leading to early-onset and frequent BCCs in the middle of 
the nineteen-thirties. This syndrome is characterized by 
dilation of the peripheral blood vessels with cyanosis and 
skin follicle atrophy features, which can be seen in the first 
decade of life. Dilation of the capillaries and milia-like 
papules on the face are particularly prominent in adults; 
eyelash and eyebrow loss or abnormalities, as well as less 
common capillary hemangiomas, were also observed. 
Histological analysis revealed regional loss of elastin 
clumps and elastin.

OCA

OCA is a group of autosomal recessive disorders. It manifests 
as a series of visual impairments and hypopigmentation of 
the skin and hair due to impaired melanin biosynthesis. 
There is an increased risk of early-onset skin cancer in those 
with OCA. OCA is caused by mutations in genes encoding 
proteins involved in the melanin biosynthesis pathway, 
which include melanogenic enzymes [i.e., TYR, tyrosinase-
related protein 1 (TYRP1)] and specific transport proteins 
found in melanosomes (64). The TYR enzyme catalyzes the 
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first step in melanin biosynthesis by oxidizing L-tyrosine to 
DOPA (dihydroxy-L-phenylalanine). In patients with OCA, 
squamous cell carcinoma is the most prevalent cancer type 
that arises; BCC and melanoma also occur (94). Malignant 
melanoma (MM) is considered rare in patients with OCA 
compared to NMSC (95).

Other genes 

BRCA1 and BRCA2

BRCA1 and BRCA2 are tumor suppressor genes encoding 
proteins that help repair damaged DNA. Specific mutations 
of these genes may increase breast and ovarian cancer risks 
and also lead to several additional types of cancer. 

BRCA1 mutations confer a predisposition to various 
cancer types, including melanomas, mesotheliomas, clear 
cell renal cancer, and BCCs (96-98). And a study has proved 
that BRCA2 can increase the risk of BCCs (99). Hence, 
more careful skin surveillance and photoprotection should 
be promoted for patients with the cancers mentioned above 
and/or known carriers of BRCA1 and BRCA2. 

CTLA-4

Specific genes such as CTLA-4, which can affect the 
immune response, may also influence BCC predisposition. 
CTLA-4 is a protein-coding gene that delivers suppressive 
signals to regulatory T cells and is associated with the 
immune tolerance induced by UV light. In a case-control 
study, genetic mutations of CTLA-4 affect the risk of 
developing BCC, particularly in those with a high frequency 
of severe tanning (100). In addition, CTLA-4 polymorphism 
(rs5742909) has been reported that may influence the 
susceptibility to multiple BCCs (101).

AS3MT 

According to multiple studies, chronic arsenic exposure 
may cause superficial multicentric BCC (102-106) 
and the intake of arsenic mostly from contaminated 
drinking water, seafood, or medications. Some genetic 
factors related may affect BCC risks, such as AS3MT 
[arsenic (+3 oxidation state) methyltransferase gene, the 
major arsenic-metabolizing gene] mutation (107,108). 

AS3MT is a protein-coding gene encoding the arsenite 
methyltransferase enzyme and telomere length (105,109). 
A detailed study conducted by Srinivas et al. investigates 
the effect of telomere length on the disease risk. The 
result shows that compared with 533 healthy controls, 
the telomere length of 528 BCC-combined arsenic-
exposed cases significantly decreased, which indicates 
that with arsenic exposure, decreased telomere length of 
individuals raises the risk of developing BCC. And there 
was a synergistic effect in those with the highest arsenic 
exposure and the shortest telomeres (109).

It should be noticed that beyond the genes mentioned 
above (Table 2), other tumor-related genes and pathways are 
also involved in the pathogenesis of BCC (11,46,63,94,121). 

A genetic analysis study of 293 BCCs concluded that 
gene mutations of eighty-five percent cases were related to 
the HH pathway (PTCH1 73%, or SMO 20%, and SUFU 
8 %) and TP53 (61%) (46). Furthermore, additional driver 
mutations in other cancer-related genes, such as MYCN 
(30%), PTPN14 (23%), PPP6C (15%), STK19 (10%), 
LATS1 (8%), can also be observed in 85% of cases. The 
up-regulation of N-Myc and Hippo-YAP pathway target 
genes (MYCN, PTPN14, and LATS1) shows the potential 
relevance in BCC tumorigenesis and progression (46).  
These factors are likely to account for the enormous 
phenotypic and biological variation in BCC. In a study 
of 12 sporadic BCCs and normal skin, mutations were 
identified in several known or presumptive cancer genes 
(CSMD1, DPP10, NOTCH1, and PREX2) via whole-
exome sequencing; meanwhile, mutational hotspots 
were detected in STAT5B, CRNKL1, and NEBL (63).  
The relevance of these mutations to the genesis of BCC, 
however, is still unclear. Recently, Sławińska et al. reported 
that STAT3 and IL‑6 polymorphism are associated with 
the risk of BCC (122).

Conclusions 

The hereditary basis of BCCs can vary from targeted 
mutations in the HH signaling pathway to deficiencies of 
tumor suppressors and melanin synthesis. These may lead to 
DNA damage and promotes BCC growth. The knowledge 
and characterization of the BCC genetic factors could 
underlie the development of new therapies and ultimately 
reduce BCC’s worldwide burden. 
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Table 2 Frequency of mutations and LOH in cancer-related genes across published studies in BCC

Gene No. of samples analyzed Mutations (%) LOH (%) Year References

PTCH 1 37 32.4 24.3 1996 (50)

24 54.2 Na 1996 (14)

55 Na 66.7 1996 (110)

26 11.8 38.2 1998 (45)

15 40 53.3 2002 (111)

14 64.3 92.8 2005 (112)

12 75 41.7 2005 (24)

12 8.3 40 2011 (113)

31 54.8 43.5 2013 (114)

42 66.7 52.6 2014 (63)

293 73 55 2016 (46)

20 60 10 2019 (51)

191 58.6 23 2020 (115)

14 50 Na 1992 (116)

27 56 Na 1993 (117)

TP53 18 61.1 5.5 1996 (110)

24 45.8 Na 1996 (14)

20 35 Na 1999 (118)

15 33 Na 2002 (111)

148 47.3 Na 2003 (119)

42 40.5 7.9 2005 (24)

30 20 Na 2014 (120)

12 66.7 Na 2014 (63)

293 61 17 2016 (46)

191 31.4 Na 2020 (115)

SMO 47 6.38 Na 1998 (25)

42 9.5 Na 2005 (24)

293 20 Na 2016 (46)

SUFU 42 2.4 Na 2005 (24)

293 8 5 2016 (46)

LOH, loss of heterozygosity; BCC, basal cell carcinoma; Na, not applicable.
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